Extracellular hypotonicity increases Na,K-ATPase cell surface expression via enhanced Na+ influx in cultured renal collecting duct cells.
نویسندگان
چکیده
In the renal collecting duct (CD), the Na,K-ATPase, which provides the driving force for Na+ absorption, is under tight multifactorial control. Because CD cells are physiologically exposed to variations of interstitial and tubular fluid osmolarities, the effects of extracellular anisotonicity on Na,K-ATPase cell surface expression were studied. Results show that hypotonic conditions increased, whereas hypertonic conditions had no effect on Na,K-ATPase cell surface expression in confluent mpkCCDcl4 cells. Incubating cells with amphotericin B, which increases [Na+]i, under isotonic or anisotonic conditions, revealed that Na,K-ATPase recruitment to the cell surface was not directly related to variations of cell volume and osmolarity. The effects of amphotericin B and extracellular hypotonicity were not additive, and both were prevented by protein kinase A and proteasome inhibitors, suggesting a common mechanism of action. In line with this hypothesis, extracellular hypotonicity induced a sustained stimulation of the amiloride-sensitive short-circuit current, indicating increased Na+ influx through the apical epithelial Na+ channel. Moreover, inhibiting apical Na+ entry by amiloride, a blocker of epithelial Na+ channel, or incubating cells in Na+ -free medium prevented the cell surface recruitment of Na,K-ATPase in response to extracellular hypotonicity. Altogether, these findings strongly suggest that extracellular hypotonicity stimulates apical Na+ influx leading to increased [Na+]i, protein kinase A activation, and recruitment of Na,K-ATPase units to the cell surface of mpkCCDcl4 cells.
منابع مشابه
Sodium transport is modulated by p38 kinase-dependent cross-talk between ENaC and Na,K-ATPase in collecting duct principal cells.
In relation to dietary Na(+) intake and aldosterone levels, collecting duct principal cells are exposed to large variations in Na(+) transport. In these cells, Na(+) crosses the apical membrane via epithelial Na(+) channels (ENaC) and is extruded into the interstitium by Na,K-ATPase. The activity of ENaC and Na,K-ATPase must be highly coordinated to accommodate variations in Na(+) transport and...
متن کاملStimulation of Na+ transport by AVP is independent of PKA phosphorylation of the Na-K-ATPase in collecting duct principal cells.
Arginine-vasopressin (AVP) stimulates Na(+) transport and Na-K-ATPase activity via cAMP-dependent PKA activation in the renal cortical collecting duct (CCD). We investigated the role of the Na-K-ATPase in the AVP-induced stimulation of transepithelial Na(+) transport using the mpkCCD(c14) cell model of mammalian collecting duct principal cells. AVP (10(-9) M) stimulated both the amiloride-sensi...
متن کاملLong-term adaptation of renal cells to hypertonicity: role of MAP kinases and Na-K-ATPase.
Renal cells in culture have low viability when exposed to hypertonicity. We developed cell lines of inner medullary collecting duct cells adapted to live at 600 and 900 mosmol/kgH(2)O. We studied the three modules of the mitogen-activated protein (MAP) kinase family in the adapted cells. These cells had no increase in either extracellular signal-regulated kinase, c-Jun NH(2)-terminal kinase, or...
متن کاملApical ammonia transport by the mouse inner medullary collecting duct cell (mIMCD-3).
The collecting duct is the primary site of urinary ammonia secretion; the current study determines whether apical ammonia transport in the mouse inner medullary collecting duct cell (mIMCD-3) occurs via nonionic diffusion or a transporter-mediated process and, if the latter, presents the characteristics of this apical ammonia transport. We used confluent cells on permeable support membranes and...
متن کاملFXYD5 (dysadherin) regulates the paracellular permeability in cultured kidney collecting duct cells.
FXYD5 (dysadherin or RIC) is a member of the FXYD family of single-span transmembrane proteins associated with the Na(+)-K(+)-ATPase. Several studies have demonstrated enhanced expression of FXYD5 during metastasis and effects on cell adhesion and motility. The current study examines effects of FXYD5 on the paracellular permeability in the mouse kidney collecting duct cell line M1. Expressing F...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 15 10 شماره
صفحات -
تاریخ انتشار 2004